Tableau tablero de marketing
ToggleEl seguimiento y el análisis eficaces del rendimiento de sus campañas de marketing son cruciales para lograr el éxito empresarial.
En esta guía paso a paso, exploraremos cómo crear un panel de control integral de marketing de rendimiento de anuncios con Tableau. Este panel le permitirá recopilar información de varios canales publicitarios, comparar su efectividad y tomar decisiones informadas para optimizar sus estrategias de marketing.
Antes de sumergirnos en los detalles técnicos, preparemos el escenario. Imagina que trabajas para una próspera empresa de comercio electrónico que promociona sus servicios web y de aplicaciones a través de anuncios de marketing de rendimiento. Utilizando diversos canales como Google, Meta, su equipo de marketing utiliza la solución de seguimiento MMP (Mobile Measurement Partner) para consolidar y analizar los datos de la campaña.
Para crear un panel de control que compile y compare las métricas de rendimiento de diferentes canales publicitarios y campañas utilizando KPI y visualizaciones detalladas.
Para garantizar la facilidad de uso y el flujo intuitivo, es crucial planificar el diseño de su panel de control.
Tenga en cuenta los siguientes principios de diseño:
Estructura alámbrica del tablero:
Key Performance Indicators (KPIs) are the backbone of your dashboard. These metrics provide insights into campaign effectiveness. Let’s create some KPIs using calculated fields:
SUM([Clicks]) / SUM([Impressions])
2. Cost Per Click (CPC)
SUM([Spends]) / SUM([Clicks])
3. Cost Per Install (CPI)
SUM([Spends]) / SUM([Install])
4. Cost Per Acquisition (CPA)
SUM([Spends]) / SUM([Signup])
5. Cost Per Sale (CPS)
SUM([Spends]) / SUM([Conversions])
Once you have selected your Key Performance Indicators (KPIs), it’s time to set the date unit for displaying the data.
In this scenario, we’ll implement button filters inspired by Google Analytics to allow intuitive selection of date ranges. When clicked, these buttons will automatically compare the selected period with the previous week, 7 days, 14 days, and more.
To achieve this, start by defining the “Period Selection” Parameter.
[Period Selection]
The following calculated field is used to filter data based on the selected period. (In this dataset, the Max date is December 30, 2023.)
[Date Filter]
Case [Parameter].[Period Selection]
When 'This Week' Then DateTrunc('day',[Date]) >= DateTrunc('week',[Max Date]) and DateTrunc('day',[Date]) <= [Max Date]
When 'Last Week' Then DateTrunc('day', [Date]) >= Dateadd("day", -7, DATETRUNC("week",[Max Date])) AND DateTrunc('day', [Date]) <= DateTrunc('day', [Max Date]-7)
When 'Last 7 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-6) and DateTrunc('day',[Date]) <= [Max Date]
WHEN 'Previous 7 days' Then DATETRUNC('day',[Date]) >= DATETRUNC('day',[Max Date]-13 ) and DATETRUNC('day',[Date]) <= [Max Date]-7
When 'Last 14 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-13) and DateTrunc('day',[Date]) <= [Max Date]
When 'Previous 14 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-27) and DateTrunc('day',[Date]) <= [Max Date]-14
When 'Last 28 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-27) and DateTrunc('day',[Date]) <= [Max Date]
When 'Pervious 28 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-55) and DateTrunc('day',[Date]) <= [Max Date]-28
When 'Last 30 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-29) and DateTrunc('day',[Date]) <= [Max Date]
When 'Pervious 30 days' Then DateTrunc('day',[Date]) >= DateTrunc('day',[Max Date]-59) and DateTrunc('day',[Date]) <= [Max Date]-30
When 'Last 90 days' Then DateTrunc('week',[Date]) >= DateTrunc('day',[Max Date]-89) and DateTrunc('week',[Date]) <= [Max Date]
When 'Pervious 90 days' Then DateTrunc('week',[Date]) >= DateTrunc('day',[Max Date]-179) and DateTrunc('week',[Date]) <= [Max Date]-90
End
Apply this filter to each KPI card.
Now, let’s make your dashboard interactive. Users can select different timeframes using the buttons you created. Implement parameter actions for seamless updates:
Parameter actions are a powerful tool that allow users to dynamically change parameters based on their selections. we’ll walk you through the process of creating interactive buttons using parameter actions, making your dashboards even more engaging and user-friendly.
Designing the Buttons
Let’s start by designing the interactive buttons that users will click to change the parameter values. To achieve this, we’ll use a combination of marks and parameter actions. Here’s how you can do it:
Repeat the above steps for all the different periods you want to create buttons for.
Configuring Parameter Actions
Now that we have our interactive buttons in place, let’s set up the parameter actions to make them functional:
Repeat the above steps for each button and parameter combination.
Now, when a user clicks a button for a specific period, the parameter will change accordingly, updating the visualization on your dashboard to reflect the selected period.
Create a calculated field to determine the compared period.
vs Field
if [Period Selection] = "This Week" then "Last Week"
ELSEIF [Period Selection] = "Last 7 days" then "Previous 7 days"
ELSEIF [Period Selection] = "Last 14 days" then "Previous 14 days"
ELSEIF [Period Selection] = "Last 30 days" then "Previous 30 days"
ELSEIF [Period Selection] = "Last 28 days" then "Previous 28 days"
ELSEIF [Period Selection] = "Last 90 days" then "Previous 90 days"
END
Growth rate bar charts provide a visual representation of changes over comparative periods, highlighting positive growth in blue and negative growth in red. We’ll start with the example of Click-Through Rate (CTR) and its growth rate calculation.
Understanding the Growth Rate Formula
Let’s dive into the formula for calculating the growth rate of CTR based on the selected period.
CTR Var %
IF [Parameter].[Period Selection] = 'This Week' THEN
((
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('week', [Max Date]) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('week', [Max Date]) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('day', [Date]) >= Dateadd("day", -7, DATETRUNC("week",[Max Date])) AND DateTrunc('day', [Date]) <= DateTrunc('day', [Max Date]-7) THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= Dateadd("day", -7, DATETRUNC("week",[Max Date])) AND DateTrunc('day', [Date]) <= DateTrunc('day', [Max Date]-7) THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('day', [Date]) >= Dateadd("day", -7, DATETRUNC("week",[Max Date])) AND DateTrunc('day', [Date]) <= DateTrunc('day', [Max Date]-7) THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= Dateadd("day", -7, DATETRUNC("week",[Max Date])) AND DateTrunc('day', [Date]) <= DateTrunc('day', [Max Date]-7) THEN [Impressions] END)
)
ELSEIF [Parameter].[Period Selection] = 'Last 7 days' THEN
((
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-6) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-6) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('day', [Date]) >= DATETRUNC('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date]-7 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DATETRUNC('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date]-7 THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('day', [Date]) >= DATETRUNC('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date]-7 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DATETRUNC('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date]-7 THEN [Impressions] END)
)
ELSEIF [Parameter].[Period Selection] = 'Last 14 days' THEN
((
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-13) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date]-14 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date]-14 THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date]-14 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date]-14 THEN [Impressions] END)
)
ELSEIF [Parameter].[Period Selection] = 'Last 28 days' THEN
((
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-27) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-55) AND DateTrunc('day', [Date]) <= [Max Date]-28 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-55) AND DateTrunc('day', [Date]) <= [Max Date]-28 THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-55) AND DateTrunc('day', [Date]) <= [Max Date]-28 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-55) AND DateTrunc('day', [Date]) <= [Max Date]-28 THEN [Impressions] END)
)
ELSEIF [Paramter].[Period Selection] = 'Last 30 days' THEN
((
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-29) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-29) AND DateTrunc('day', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-59) AND DateTrunc('day', [Date]) <= [Max Date]-30 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-59) AND DateTrunc('day', [Date]) <= [Max Date]-30 THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-59) AND DateTrunc('day', [Date]) <= [Max Date]-30 THEN [Clicks] END)
/ SUM(IF DateTrunc('day', [Date]) >= DateTrunc('day', [Max Date]-59) AND DateTrunc('day', [Date]) <= [Max Date]-30 THEN [Impressions] END)
)
ELSEIF [매개 변수].[Period Selection] = 'Last 90 days' THEN
((
SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-89) AND DateTrunc('week', [Date]) <= [Max Date] THEN [Clicks] END)
/ SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-89) AND DateTrunc('week', [Date]) <= [Max Date] THEN [Impressions] END)
)
-
(
SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-179) AND DateTrunc('week', [Date]) <= [Max Date]-90 THEN [Clicks] END)
/ SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-179) AND DateTrunc('week', [Date]) <= [Max Date]-90 THEN [Impressions] END)
))
/ (
SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-179) AND DateTrunc('week', [Date]) <= [Max Date]-90 THEN [Clicks] END)
/ SUM(IF DateTrunc('week', [Date]) >= DateTrunc('day', [Max Date]-179) AND DateTrunc('week', [Date]) <= [Max Date]-90 THEN [Impressions] END)
)
ELSE NULL
END
While the formula might seem complex due to various parameters, the logic remains the same: return results for the chosen period.
CTR is defined as Clicks divided by Impressions. To prevent mixed aggregated and non-aggregated expressions, we’ll break down the formula. Here’s the breakdown for the “This Week” period:
IF [Parameter].[Period Selection] = 'This Week' THEN
( (Clicks for Current Week / Impressions for Current Week) - (Clicks for Previous Week / Impressions for Previous Week) )
/ (Clicks for Previous Week / Impressions for Previous Week)
Similarly, the formula is adapted for other periods like “Last 7 days,” “Last 14 days,” and so on.
Configuring the Growth Rate Calculation
Organize your sheets within containers for a clean dashboard layout.
Creating Color-Coded Bar Charts
To enhance data interpretation, let’s create color-coded bar charts :
By following these steps, you’ll successfully create insightful growth rate bar charts for your key performance indicators (KPIs).
These visualizations allow you to assess not only ratios but also absolute values, providing a comprehensive context for data analysis. With color-coded bars, you can effectively communicate trends and changes in your data to make informed decisions.
Effective marketing requires analyzing data across different channels and campaigns. Build insightful visualizations that allow you to compare CTR, CPS, and Return on Ad Spend (ROAS) across various channels and campaigns.
Imagine a visual representation where each stage of a funnel unveils metrics step by step. The stages, laid out from top to bottom, illustrate Acquisition, Installation, Sign-up, and Purchase metrics.
To provide a comprehensive view, the left section showcases Cost Metrics, the middle section tracks Event Counts, and the right section indicates Conversion Rates. This approach allows you to grasp the progression of key metrics as users move through the funnel stages.
Comparing three crucial metrics — Click-Through Rate (CTR), Cost per Sale (CPS), and Return on Ad Spend (ROAS) — offers a holistic insight into campaign performance.
While ROAS assesses revenue against costs, the inclusion of CTR helps gauge the appeal of creative materials, and CPS sheds light on the overall cost efficiency of achieving sales. By examining these metrics together, you can make informed decisions about your advertising strategies.
Interactive Insights
Para una experiencia dinámica, puede interactuar con los datos en función de sus períodos de tiempo preferidos. Simplemente haga clic en el círculo de la métrica relevante para revelar información específica de esa métrica a lo largo del tiempo. Esta función interactiva le permite explorar las tendencias y los patrones de datos que más le importan.
Inspiración de Ellen Blackburn :
Esta innovadora configuración de gráfico se inspira en el gráfico de capas Map de Ellen Blackburn, adaptando su concepto creativo para visualizar datos de una manera novedosa. (Enlace a La obra de Ellen Blackburn)